Affiliation:
1. Department of Machine Design/Mechatronics, KTH Royal Institute of Technology, Stockholm, Sweden
2. School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China
Abstract
Shell vibration signals generated during grinding have useful information related to ball mill load, while usually contaminated by noises. It is a challenge to recognize load parameters with these signals. In this paper, a novel approach is proposed based on the improved empirical wavelet transform (EWT), refined composite multi-scale dispersion entropy (RCMDE) and fireworks algorithm (FWA) optimized SVM. Firstly, vibration signals are denoised by improved EWT, which uses cubic spline interpolation to calculate envelope spectrum for segmentation. Then, RCMDEs of the denoised signals are calculated as feature vectors. The vectors’ dimensionalities are reduced by principal component analysis (PCA). Finally, a mill load prediction model is established based on the FWA optimized SVM. The reduced feature vectors are fed to the model, thus material-to-ball ratio and filling rate being outputs. Grinding experiments show that the extracted features by RCMDE can effectively distinguish three load states. Meanwhile, experiments also show that FWA reduces the forecasting errors of material-to-balls ratio and filling rate by 1.9% and 2.9% compared with genetic algorithm (GA), as well as by 1.92% and 4.21% compared with particle swarm optimization (PSO) algorithm. It demonstrates that the proposed approach for ball mill load forecasting has high accuracy and stability.
Funder
National Natural Science Foundation of China
Education Department of Jiangxi Province
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献