LQR optimized BP neural network PI controller for speed control of brushless DC motor

Author:

Wang Tingting1ORCID,Wang Hongzhi12,Hu Huangshui3,Wang Chuhang4

Affiliation:

1. College of Mechatronic Engineering, Changchun University of Technology, Changchun, China

2. College of Computer Science and Engineering, Changchun University of Technology, Changchun, China

3. College of Computer Science and Engineering, Jilin University of Architecture and Technology, Changchun, China

4. College of Computer Science and Technology, Changchun Normal University, Changchun, China

Abstract

This paper proposes a linear quadratic regulator (LQR) optimized back propagation neural network (BPNN) PI controller called LN-PI for the speed control of brushless direct current (BLDC) motor. The controller adopts BPNN to adjust the gain [Formula: see text] and [Formula: see text] of PI, which improves the dynamic characteristics and robustness of the controller. Moreover, LQR is adopted to optimize the output of BPNN so as to make it close to the target PI gains. Finally, the optimized control output is inputted into the BLDC motor system to achieve speed control. The performance analysis of the proposed controller is presented to compare with traditional PI controller, neural network PI controller and LQR optimized PI controller under MATLAB/Simulink, the results shows that the proposed controller effectively improves the response speed, reduces the steady-state error and enhances the anti-interference ability.

Funder

Science and technology plan project of Jilin Province

National nature fund project

Science and technology development project of Jilin Province

Capital construction funds in the provincial budget of Jilin development and reform commission in 2019

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3