Improved probabilistic neural networks with self-adaptive strategies for transformer fault diagnosis problem

Author:

Yi Jiao-Hong1,Wang Jian1,Wang Gai-Ge234

Affiliation:

1. School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China

2. School of Computer Science and Technology, Jiangsu Normal University, Xuzhou, China

3. Institute of Algorithm and Big Data Analysis, Northeast Normal University, Changchun, China

4. School of Computer Science and Information Technology, Northeast Normal University, Changchun, China

Abstract

Probabilistic neural network has successfully solved all kinds of engineering problems in various fields since it is proposed. In probabilistic neural network, Spread has great influence on its performance, and probabilistic neural network will generate bad prediction results if it is improperly selected. It is difficult to select the optimal manually. In this article, a variant of probabilistic neural network with self-adaptive strategy, called self-adaptive probabilistic neural network, is proposed. In self-adaptive probabilistic neural network, Spread can be self-adaptively adjusted and selected and then the best selected Spread is used to guide the self-adaptive probabilistic neural network train and test. In addition, two simplified strategies are incorporated into the proposed self-adaptive probabilistic neural network with the aim of further improving its performance and then two versions of simplified self-adaptive probabilistic neural network (simplified self-adaptive probabilistic neural networks 1 and 2) are proposed. The variants of self-adaptive probabilistic neural networks are further applied to solve the transformer fault diagnosis problem. By comparing them with basic probabilistic neural network, and the traditional back propagation, extreme learning machine, general regression neural network, and self-adaptive extreme learning machine, the results have experimentally proven that self-adaptive probabilistic neural networks have a more accurate prediction and better generalization performance when addressing the transformer fault diagnosis problem.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictive Model for Incipient Faults in Oil-Filled Transformers;Sakarya University Journal of Computer and Information Sciences;2024-08-31

2. Advancement in transformer fault diagnosis technology;Frontiers in Energy Research;2024-07-22

3. A three-stage novel framework for efficient and automatic glaucoma classification from retinal fundus images;Multimedia Tools and Applications;2024-06-14

4. Global exponential synchronization of switching neural networks with leakage time-varying delays;Communications in Nonlinear Science and Numerical Simulation;2024-06

5. A Review on Incipient Fault Detection, Location and Classification in Underground Cable;Lecture Notes in Electrical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3