An adaptive threshold algorithm for sensor fault based on the grey theory

Author:

Wu Lifeng123,Yao Beibei123,Peng Zhen4,Guan Yong123

Affiliation:

1. College of Information Engineering, Capital Normal University, Beijing, China

2. Beijing Engineering Research Center for Highly Reliable Embedded Systems, Capital Normal University, Beijing, China

3. Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing, China

4. Department of Information Management, Beijing Institute of Petrochemical Technology, Beijing, China

Abstract

An appropriate threshold is the key factor in a diagnosis of fault. However, the traditional method of setting a fixed threshold does not take into consideration the influence of system status and noise interference, and it often leads to false alarms and missed detections of system fault. To improve the accuracy of fault diagnosis, we first obtained the residual signal based on the strong tracking filter method – cubature Kalman filtering. We then proposed an adaptive dynamic threshold adjustment algorithm based on the grey theory. In this method, the threshold value can be dynamically adjusted according to the real-time mean and variance of the residual. Finally, we performed a sensor fault experiment involving three sensors in different locations of a robot. The results demonstrate the feasibility of our proposed method.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3