A study on spring-back in U-draw bending of DP350 high-strength steel sheets based on combined isotropic and kinematic hardening laws

Author:

Tong Van-Canh1,Nguyen Duc-Toan2ORCID

Affiliation:

1. Department of Mechanical Engineering, Hung Yen University of Technology and Education, Hai Duong, Vietnam

2. School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam

Abstract

In this article, a numerical model for predicting spring-back in U-draw bending of DP350 high-strength steel sheet was presented. First, the hardening models were formulated based on combined isotropic–kinematic hardening laws, along with the traditional pure isotropic and kinematic hardening laws. A simplified method was proposed for determining the material parameters. Comparison of stress–strain curves of uniaxial tests at various pre-strains predicted by the numerical models and experiment showed that the combined isotropic–kinematic hardening model could accurately describe the Bauschinger effect and transient behavior subjected to cyclic loading conditions. Then, a finite element model was created to simulate the U-draw bending process using ABAQUS. Simulations were then conducted to predict the spring-back of DP350 high-strength steel in U-draw bending with geometry provided in the NUMISHEET’2011 benchmark problems. It was shown that the predictions of spring-back using the proposed model were in good agreement with the experimental results available in the literature. Finally, the effects of various tool and process parameters such as punch profile radius, die profile radius, blank holding force, and punch-to-die clearance on the spring-back were investigated. The simulation results suggested the significance of tool and process parameters on the final shape of the formed parts influenced by the spring-back.

Funder

National Foundation for Science and Technology Development

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3