Influence of boundary condition and stiffener type on collapse behaviours of stiffened panels under longitudinal compression

Author:

Pan Jin12,Li Na12,Song Zhao Jun3,Xu Ming Cai34ORCID

Affiliation:

1. Key Laboratory of High Performance Ship Technology, Wuhan University of Technology, Ministry of Education, Wuhan, China

2. Departments of Naval Architecture, Ocean and Structural Engineering, School of Transportation, Wuhan University of Technology, Wuhan, China

3. School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, China

4. Collaborative Innovation Centre for Advanced Ship and Deep-Sea Exploration (CISSE), Wuhan, China

Abstract

A series of stiffened panels with different dimensions and types of stiffener are simulated under longitudinal compression in finite element code ANSYS. Two bays/spans model with periodic boundary condition is adopted to consider the influence of neighbouring members. The stiffened panel adopted in the finite element mode is generally cut from the deck or bottom of a ship hull girder, and thus, the constraint on their edges depends to some extent on the relative structural response of the adjacent members. Hence, to understand the effects of constraint condition on the collapse behaviour, an extensive parametric study is carried out, employing a wide geometrical range for bulk carrier and very large crude carrier. Moreover, considering various collapse modes, the load-carrying capacities of the stiffened panels are also investigated for various stiffener types. It is found that the biaxial stress state caused by longitudinal constraint could increase or decrease the load-carrying capacity of the stiffened panel, which depends on the collapse mode and should be noticed. The transverse constraint on the longitudinal edges could cause biaxial stress state, which might increase or decrease the load-carrying capacity of the stiffened panel, which depends on the collapse modes.

Funder

fundamental research funds for central universities of the central south university

china scholarship council

Natural Science Fund of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3