Effects of the addition of carbon nanofibers on mechanical properties of woven glass/epoxy composites with different weave patterns

Author:

Aghaei Mohammad1,Shokrieh Mahmood M1ORCID,Mosalmani Reza2

Affiliation:

1. Composites Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

2. Department of Mechanical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

The harness and the weave style are among the most important properties of woven fabrics. Most of the previous studies utilized woven fabrics with specific harnesses to explore the effects of nanoparticles on woven composites. Therefore, an experimental study was conducted to examine the impact of three weave patterns, namely plain, 5-harness satin, and 8-harness satin, on the mechanical properties of woven composites under tensile and shear loads. Subsequently, the effect of applying carbon nanofibers (CNFs) to epoxy resin reinforced with woven glass fibers with various harnesses was studied. The experimental results were evaluated statistically, indicating that using CNFs differently affects composite properties with various fabric harnesses. The addition of 0.5 wt.% CNFs to woven composites with varied harnesses enhanced the tensile strength by 19.2%–22.9% and the tensile fracture strain by 12.9%–13.8%, respectively. However, the elastic tensile modulus of woven composites was not increased. A further increase in the CNFs weight fraction from 0.5 wt.% did not improve the tensile properties. The addition of 0.5 wt.%, 1.0 wt.% and 1.5 wt.% CNFs increased the shear strength up to 30.6% and the shear modulus up to 18.7%, respectively. The results showed that the addition of CNFs more significantly affected the shear than the tensile properties. It was also revealed that employing a proper weight fraction of CNFs and a proper fabric harness significantly improves the mechanical properties of woven composites. Finally, an empirical model was developed to predict the strength and elastic modulus of woven composites with different harnesses and CNF weight fractions.

Funder

Iran National Science Foundation

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3