Thermal comfort analysis of auto-racing suits using a dynamic thermal manikin

Author:

Riedy Reannan1,McQuerry Meredith1ORCID

Affiliation:

1. Retail Entrepreneurship, ThermaNOLE Comfort Lab®, Florida State University, Tallahassee, USA

Abstract

Motorsports athletes compete at high speeds for, on average, three to four hours in a cockpit that can reach temperatures of 50°C. While engineers have worked to create a faster car and safer conditions, the comfort of the driver is often sacrificed. Motorsports governing bodies require that a driver’s racing suit meet at least one of several certification levels for thermal protection. While much research and testing go into certification, there continues to be a lack of information in the body of research regarding the impact of the racing suit on thermal comfort and heat stress. Therefore, the purpose of this research was to determine the impact of auto-racing personal protective clothing on the thermal comfort of race car drivers by utilizing a thermal manikin to observe the thermal insulation, evaporative resistance, and total heat loss (THL) of standard racing suits. Racing suit systems of varying SFI Foundation, Inc. (SFI) certification levels were purchased and analyzed using an ANDI sweating thermal manikin in an environmental chamber. Results from this research demonstrate that the average predicted THL for an SFI compliant racing ensemble is 172 W/m2. Findings indicate it is more beneficial for thermal comfort to wear a lower rated suit with base layers as opposed to a higher rated suit without undergarments. More research must be done to better understand how the predicted THL for racing ensembles effects the human body when performing under race day conditions, and to determine a minimum THL benchmark for racing ensembles.

Funder

American Association of Textile Chemists and Colorists

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Reference34 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3