Affiliation:
1. Gaziantep University, Faculty of Engineering, Textile Engineering Department, Gaziantep, Türkiye
2. Gaziantep University, Faculty of Aeronautics and Aerospace, Gaziantep, Türkiye
Abstract
In this study, a novel multifunctional carpet test device was proposed to overcome deficiencies of current technology, including manual operation error and fixed load. The newly developed test device can automatically perform short-term static loading, long-term static loading and thickness measurement on five samples, simultaneously. The application of the load is achieved by using pneumatic system elements and automation of the developed test device is obtained by a PLC (Programmable Logic Controller) software. The device was verified according to “trueness” and “precision” criteria via statistical analyses. As a result of trueness determination, the Mean Absolute Percentage Error (MAPE) values of the developed test device were between 0.001–0.023, in comparison to that of the traditional carpet thickness tester, which exhibits very close trend between two measurements. The precision analysis results revealed no significant difference in 95% confidence interval between developed test device and the carpet thickness tester. Moreover, the developed test device is capable for thickness loss test by brief moderate loading, prolonged heavy loading and carpet thickness measurement, following related international standards.
Funder
THE SCIENTIFIC AND TECHNOLOGICAL RESEARCH COUNCIL OF TÜRKİYE
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)
Reference21 articles.
1. TS 7578:2022. Tekstil yer döşemeleri-Uzun süreli statik yüklemeden sonra kalınlık kaybının tayini. Türkiye: TSE, 1986.