Investigation of the properties of PAN/f-MWCNTs/AgNPs composite nanofibers

Author:

Kizildag Nuray1,Ucar Nuray1

Affiliation:

1. Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey

Abstract

In this study, composite nanofibers from a solution of polyacrylonitrile (PAN), functionalized multi-walled carbon nanotubes (f-MWCNTs), and silver nitrate (AgNO3) in dimethylsulfoxide were successfully produced by the electrospinning method. Aqueous solution of hydrazinium hydroxide was used for the chemical reduction of silver ions. The effects of the simultaneous use of carbon nanotubes (either pristine or amine-functionalized) and silver nitrate in different percentages and the application of chemical reduction on the properties of the nanocomposite nanowebs were investigated. FTIR, SEM, conductivity meter, tensile tester, XRD, and DSC were used for the characterization. Antibacterial activities of the nanocomposite nanowebs were determined against S. Aureus. Full factorial experimental design was utilized in order to be able to evaluate the contributions of the selected factors (f-MWCNT content, AgNO3 content, and application of reduction process) to the variations in ultimate tensile strength, elongation, and conductivity of the composite nanowebs. Analysis of variance (ANOVA) and multiple comparisons were carried out to evaluate the average nanofiber diameters and mechanical properties. PAN/f-MWCNTs/AgNPs nanowebs displayed enhanced conductivity and antimicrobial properties particularly when the chemical reduction process was applied. Besides they showed improved crystallinity compared with pure PAN nanofibers. While the reduction process made the highest contribution to the ultimate tensile strength, elongation, and conductivity of the nanowebs, f-MWCNT content had negligible effect on conductivity of the nanowebs. Considering all the results obtained in this study, composite nanofiber webs of PAN with 1 w% f-MWCNTs and 1 w%AgNO3 can be suggested for use as antistatic and antibacterial filaments.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3