Effecting factors on electrical resistance of conductive paths

Author:

Erdem Akgün Duygu1ORCID

Affiliation:

1. Faculty of Architecture and Design, Department of Fashion Design, Selçuk University, Alaeddin Keykubat Campus University, Konya, Turkey

Abstract

Wearable electronics, wearable devices, and wearable technology concepts are gaining more importance day by day. With the developments in conductive and electronic industry which can be used in the clothing manufacturing, smart garments category look set to expand in terms of wearable offerings. There are different pathways to make a garment smart and, in all circumstances, there is a need for a path for connection between conductive components. This could be provided by cables conventionally or conductive paths can be utilized. Usually conductive fabrics, conductive printing and conductive yarns are used to create conductive paths. When using conductive yarns sewing is the most preferred technique for both electronic component and conductive path production. In this study, conductive paths are generated using different conductive yarns, stitch types, stitch densities, and thread positions and the effect of these parameters on electrical resistance values were investigated. Results showed that conductive thread type, stitch density, and conductive thread position are significant factors on electrical resistance values.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Reference19 articles.

1. Forecast GMDT. Cisco visual networking index: global mobile data traffic forecast update, 2017–2022, 2019.

2. Statista Digital Market Outlook – Wearables, 2021 https://www.statista.com/outlook/319/100/wearables/worldwide.

3. Weinswig D. The wearables report 2016: reviewing a fast changing market. Fung Global Retail and Technology, 2016; 1–19.

4. Consumer resistance to innovation: smart clothing

5. Conductive polymers for smart textile applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3