Affiliation:
1. Department of Textile Technology, Uttar Pradesh Textile Technology Institute, Kanpur, India
Abstract
Thermoelectric (TE) materials based on conjugated/conductive polymers can directly convert heat into electricity, and thus found promising applications in energy scavenging and cooling technologies. The performance of these thermoelectric materials is governed by different parameters like the nature of the material, thermal stability, electrical conductivity, Seebeck coefficient, and thermal conductivity. Although the traditional inorganic semiconductor materials such as PbTe (Lead Telluride), Bi2Te3 (Bismuth Telluride), SiGe (Silicon-Germanium), SnSe (Tin Selenide), and Skutterudite (CoAs2) are giving high performance, they have some inherent limitations, such as poor processability, toxicity, rare availability, and high cost of manufacturing. Whereas, organic conjugated polymers such as polyacetylene (PA), polyaniline (PANi), Poly(3-hexylthiophene) (P3HT), polypyrrole (PPy), poly 3,4-ethylenedioxythiophene (PEDOT), etc. have low cost of synthesis, light in weight, low toxicity and better processibility. Organic textile thermoelectric generators (T-TEG) can be prepared by in-situ polymerization of the conjugated polymers onto textile substrates. This article reviews the preparation, design and performance of these T-TEGs. Various approaches and scopes of improvement of efficiency of the thermoelectric effect of the T-TEGs are discussed. Various potential applications of the T-TEG in different fields are also described.
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献