Influence of different textile structure reinforced composite leaf spring on their fabrication potential

Author:

Khatkar Vikas1ORCID,Behera Bijoya Kumar1ORCID

Affiliation:

1. Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi, India

Abstract

In advanced engineering applications, machining of composite material is a must to perform necessary assembly operations. This work deals with the investigation of fabrication potential of Glass/epoxy composites reinforced with different textile structures in the form of E-glass based chopped fiber, unidirectional (UD) tow, bidirectional (2D) plain woven, four different 3D woven orthogonal solid structures with varying binder percentage and one 3D woven angle interlock structure. The Influence of reinforcement architecture on tensile strength, drilling damage, bearing response, specific energy absorption (bending), and spring stiffness of composites structure was investigated. Damage analysis due to drilling was primarily assessed in terms of delamination whereas bearing strength, bearing strain and common bearing failure were examined from the bearing strength test. Different bearing failure was observed for different composite structures; UD composite was noticed with complete shear out failure while chopped failed due to tearing and 2D structure reinforced composite predominantly failed due to tearing and delamination failure. 3D orthogonal composite failed due to tearing in the warp direction and shear out in weft direction whereas 3D interlock failed due to tearing in both warp and weft direction. 3D orthogonal based composite structure exhibited the highest specific energy absorption (SEA) along with improved spring stiffness and therefor it could be a potential material for automotive leaf spring application.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3