Thermodynamics of aerogel-treated nonwoven fabrics at subzero temperatures

Author:

Venkataraman Mohanapriya1,Mishra Rajesh1,Jasikova Darina2,Kotresh TM3,Militky Jiri1

Affiliation:

1. Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Czech Republic

2. Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Czech Republic

3. Defence Research and Development Organization, Bangalore, India

Abstract

Nonwoven fabrics and aerogel have complementary properties required for good thermal insulation. In this work, the polyester/polyethylene nonwoven thermal wraps treated with amorphous silica aerogel are studied and characterized with regard to thermodynamical properties at subzero temperatures. The characterization of physical structure was done by scanning electron microscope. C-Therm TCi thermal conductivity analyzer was used to measure thermal properties like conductivity, resistance, and effusivity at subzero temperatures. Heat transfer caused by convection through the thermal wraps was measured by particle image velocimetry technique, which allows obtaining information about the current distribution of velocities in two-dimensional array in a flowing fluid. Vector and scalar maps of the fluid flow were caused by thermal convection. The samples were studied for different temperature gradients. On scientific evaluation of results, thermal conductivity and thermal effusivity were found to be differing with respect to different temperatures and fabric density. Thermal resistance showed an increase as the fabric thickness increases. It was observed that fabric density and the aerogel present in the structures have a significant effect on thermal properties of aerogel-treated nonwoven fabrics. The findings in this study are significant and can be used for further research in aerogel-treated nonwoven fabrics.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3