Novel alginate, chitosan, and psyllium composite fiber for wound-care applications

Author:

Masood Rashid1,Hussain Tanveer1,Miraftab Mohsen1,Ullah Azeem1,Ali Raza Zulfiqar1,Areeb Tanzeel1,Umar Muhammad1

Affiliation:

1. National Textile University, Faisalabad, Pakistan

Abstract

Alginate/psyllium and alginate/chitosan fibers have great potential for wound-care applications. However, alginate/psyllium fibers have poor tensile strength and alginate/chitosan fibers comparatively have low liquid absorption properties. The main aim was to develop a tri-component fiber with comparatively better tensile strength and liquid absorption properties using three different natural polysaccharides. Alginate, chitosan, and psyllium composite fibers were made by using two different coagulation bath compositions. In method A, psyllium-containing sodium alginate dope solution was extruded into a bath containing CaCl2 and subsequently passed through hydrolyzed chitosan bath, whereas in method B: psyllium-containing sodium alginate dope solution was directly extruded into hydrolyzed chitosan and subsequently passed through CaCl2 bath. The produced fibers were rinsed using 25–100% acetone solutions and dried in air. Tensile, antibacterial, swelling, and absorption properties of these fibers were measured. The study showed that homogeneous fibers can be extruded by using both methods. The fibers produced showed good antibacterial, absorption, and swelling properties. Antibacterial activity of the controlled and composite fibers was more or less the same. However, tensile properties of fibers produced by method A and method B were less than the control alginate–chitosan fibers. The composite fibers produced by method A showed better absorption of saline and solution A than control fiber and composite fibers produced by method B. Therefore, method A is recommended for producing the psyllium-containing alginate chitosan fibers for wound-dressing applications. The fibers produced by this method showed comparable tensile and antibacterial properties, superior absorbency, and swelling properties.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3