Novel weft-knitted spacer structure with silicone tube and foam inlays for cushioning insoles

Author:

Li Nga-wun1ORCID,Yick Kit-lun12ORCID,Yu Annie3ORCID

Affiliation:

1. Laboratory for Artificial Intelligence in Design, Hong Kong

2. Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong

3. Department of Advanced Fibro Science, Kyoto Institute of Technology, Kyoto, Japan

Abstract

A novel spacer fabric with a weft-knitted structure of silicone tube and foam inlays is proposed for use in insoles to alleviate in-shoe pressure, reduce moisture and enhance thermal comfort. The material variables, including the diameter of the spacer yarn, type of inlaid material and net wrap and spacer pattern have been systematically investigated. Their force reduction and thermal characteristics in terms of air and water vapour permeabilities, thermal conductivity and impact force reduction are determined and compared to those of traditional insole materials. The results show that the inlays can effectively enhance the impact force reduction of the 3D spacer fabrics. In comparison to traditional insole materials, the proposed spacer fabric with an inlaid structure can enhance air and moisture permeabilities and heat dissipation to provide greater wear comfort for prolonged use. The air permeability, thermal conductivity and impact force reduction of the inlaid spacer structure can be modified with changes to the diameter of the spacer yarn, type of inlay and net material used and spacer pattern, whilst its water vapour permeability can also be varied by using different types of inlays. Spacer fabric with a higher number of spacer yarn courses and spacer yarn with a large diameter not only exhibits good impact force reduction with uniform thickness, but also offers good thermal conductivity. The findings of this study will contribute toward an insole design with the use of alternative insole materials for optimal foot protection.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3