Graphene coated cotton nonwoven for electroconductive and UV protection applications

Author:

Jain Vinit Kumar1ORCID,Chatterjee Arobindo1ORCID

Affiliation:

1. Department of Textile Technology, Dr B. R. Ambedkar National Institute of Technology, Jalandhar, India

Abstract

The functional properties and applications of graphene coated textiles depend on the magnitude of graphene add-on which in turn is influenced by the type of substrate and the dipping conditions. In the present study, optimized GO (graphene oxide) dipping conditions are identified for the preparation of cost-effective and scalable rGO (reduced graphene oxide) coated cotton nonwoven for electroconductive and UV (ultraviolet) blocking applications. To understand the influence of GO dipping variables on rGO add-on and electrical resistivity of cotton, batch adsorption studies are carried out in loose fibre form to eliminate the structural influence of yarn or fabric. Batch adsorption studies suggest that GO concentration, pH of GO solution and sodium dithionite (reductant) concentration are the most influencing dipping variables and these dipping variables are optimized for cotton nonwoven fabric using Box–Behnken response surface design to achieve minimum surface resistivity. The rGO coated cotton nonwoven fabric shows excellent UV blocking properties (UV protection factor = 89.38) at the optimized GO dipping conditions. Physical properties of cotton nonwoven fabric such as GSM, thickness, stiffness, breaking strength and elongation are analysed at different dipping cycles. After the rGO coating, bending rigidity, bending modulus and breaking elongation of the cotton nonwoven fabric decrease, whereas the breaking strength increases. rGO coated cotton fabric exhibits excellent stability towards multiple washing and rubbing. The graphene coated cotton is characterised by FT-IR, XRD, Raman, TGA, FESEM and LEICA image analyser.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3