Transport and surface charge density of univalent ion of polyvinyl chloride-based barium tungstate ion-exchange composite membrane for industrial separation of waste water

Author:

Khan Mohammad MA1,Khan Anish23ORCID,Asiri Abdullah M23ORCID,Gupta VK4,

Affiliation:

1. Applied Science and Humanities Section, Faculty of Engineering and Technology, University Polytechnic, Aligarh Muslim University, Aligarh, India

2. Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia

3. Center of Excellency for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia

4. Department of Chemistry, School of Sciences, IFTM University, Moradabad, UP, India

Abstract

In the present study, a polyvinyl chloride-based barium tungstate ion-exchange membrane was synthesized by sol–gel method. The structure of membrane was studied in terms of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. X-ray diffraction analysis confirms crystalline form of the composite membrane without any other impurity. Scanning electron microscopy and Fourier transform infrared spectroscopy analysis show the uniform arrangement of particles in the membrane with crack-free surface structure and presence of different functional groups of the organic-inorganic materials. The electrochemical properties like surface charge density ( D), transport number and mobility ratio of the ion-exchange composite membrane were theoretically evaluated and compared with observed values using “Teorell, Meyers and Sievers” method. Transport number follows the order as KCl <NaCl < LiCl < NH4Cl, while the surface charge density showed reversed order. The results showed that the low concentration of electrolytes favors the high mobility of univalent cation in the present study. The above result proves the analytical utility of polyvinyl chloride-based barium tungstate ion-exchange membrane in environmental management.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3