High quality factor double negative metamaterial for textile fabric and fabric moisture sensing applications

Author:

Billa Md. Bakey1ORCID,Islam Mohammad Tariqul2,Alam Touhidul1,Albadran Saleh3,Alzamil Ahmed3,Alshammari Ahmed S.3,Alsaif Haitham3,Islam Md Shabiul4,Soliman Mohamed S.56

Affiliation:

1. Pusat Sains Angkasa (ANGKASA), Institut Perubahan Iklim, Universiti Kebangsaan Malaysia, Selangor, Malaysia

2. Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Selangor, Malaysia

3. Department of Electrical Engineering, College of Engineering, University of Ha’il, Ha’il, Saudi Arabia

4. Faculty of Engineering (FoE), Multimedia University, Selangor, Malaysia

5. Department of Electrical Engineering, College of Engineering, Taif University, Taif, Saudi Arabia

6. Department of Electrical Engineering, Faculty of Energy Engineering, Aswan University, Aswan, Egypt

Abstract

This study introduces an innovative high-Quality factor (Q-factor) double negative (DNG) metamaterial sensor designed for textile fabric and fabric moisture sensing applications in the dynamic realm of textile innovation. The sensor is specifically designed to detect the dielectric properties and moisture content of different textile fabrics. The high Q-factor of this metamaterial structure ensures heightened sensitivity and accuracy in fabric sensing, facilitating precise detection of even subtle changes in fabric properties. By measuring frequency shifting and analyzing S21 values, the sensor provides crucial information about the fabric’s dielectric characteristics. Sensing experiments conducted on various fabrics, including cotton, denim, corduroy, organza, and polyester unveil distinctive patterns of frequency shifting and Q-factors, establishing a nuanced link between fabric structure and sensor performance. The proposed sensor is capable of detecting fabrics with a very low dielectric constant variation of 0.05. In the experiment, the high-dielectric fabric denim (1.7) exhibited frequency shifting and Q-factor of 6970 and 834.87, respectively. Moreover, it is worth noting that the low-dielectric fabric organza (1.03) exhibits frequency shifting and Q factors of 2190 and 1367.03, respectively. Experimental results affirm the prominent efficacy of the proposed sensor in fabric and fabric moisture sensing. Its high Q-factor empowers the sensor to accurately detect and monitor fabric properties, rendering it highly suitable for critical tasks such as quality control, energy efficiency optimization, and process enhancement within the textile industry. The proposed metamaterial sensor (MMS) can significantly contribute to the development of a smart textile sensing technology and pave the way for innovative applications in the textile industry.

Funder

Scientific Research Deanship of University of Ha’il - Saudi Arabia

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3