Textile smart sensors based on a biomechanical and multi-layer perceptron hybrid method

Author:

Chun Sehwan1,Kim Jooyong1ORCID

Affiliation:

1. Department of Material Science and Engineering, Soongsil University, Dongjak-gu, Seoul, Korea

Abstract

Resistance training is becoming increasingly important and widespread. Decomposition of the muscle loads applied is important for injury prevention and determining the load on the targeted muscles. In this study, a flexible textile PET (polyethylene terephthalate)/SP(Spandex) SWCNT (Single-walled carbon nanotube) stretch sensor was fabricated and attached at four locations: the elbow, brachioradialis/flexor carpi radialis, biceps brachii, and triceps brachii. The stretch sensors attached to the elbow can measure the angle of elbow flexion without an IMU 9-axis sensor using quadratic fitting. A Multi-Layer Perceptron (MLP) was used to decompose the muscle volume expansions of the 3muscle by angle. The model provided a good fit for all three muscles, with R-squared values ranging from Test set 0.98725 to 0.99815. Through one input and three ouput fitting, the muscle volume expansion quantities during the bicep barbell curl were decomposed and compared with data. The results showed that the brachioradialis/flexor carpi radialis muscle maintained 13% of the arm muscle volume up to 60°, then increased to 44% at 100°. The biceps brachii muscle steadily increased to 70% from 0° up to 60°, and then maintained 40% at 100° due to the volume increase of other muscles. The triceps brachii muscle maintained 9% of the arm muscle volume up to 90°, then increased to 20% at 100°. This study shows that muscle volume expansion can be easily measured with a non-body contact wearable device, unlike many existing contact methods for measuring muscle activity like EMG (electro-myography), etc. This study provides a novel approach for easily measuring muscle volume expansion and decomposition in wearable devices, which can indirectly indicate injury prevention and muscle loading in target areas through balance optimization among local muscles.

Funder

Korea Institute for Advancement of Technolog

Korea Governmen

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3