Effect of alkyl derivatization of gellan gum during the fabrication of electrospun membranes

Author:

Palumbo Fabio Salvatore1,Federico Salvatore1ORCID,Pitarresi Giovanna1,Fiorica Calogero1,Scaffaro Roberto2ORCID,Maio Andrea2,Gulino Emmanuel Fortunato2,Giammona Gaetano13

Affiliation:

1. Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy

2. Dipartimento di Ingegneria, UdR INSTM di Palermo, Università degli Studi di Palermo, Palermo, Italy

3. Institute of Biophysics at Palermo, Italian National Research Council, Palermo, Italy

Abstract

Electrospun nanofibers based on polysaccharides represent a consolidated approach in Tissue Engineering and Regenerative Medicine (TERM) and nanomedicine as a drug delivery system (DDS). In this work, two chemical derivatives of a low molecular weight gellan gum (96.7 kDa) with aliphatic pendant tails were processed by electrospinning technique into non-woven nanofibrous mats. In order to generate spinnable blends, it was necessary to associate poly vinyl alcohol (PVA). The relationships between the physicochemical properties and the processability via electrospinning technique of gellan gum alkyl derivatives (GG-C8 and GG-C12 having a degree of alkyl chain derivatization of 17 mol % and 18 mol %, respectively) were investigated. The deposition of nanometric fibers (212.4 nm ± 60.0) was achieved by using the blend GG-C8/PVA spinned at 5% w/v in water. The use of a binary solvent composed of water and ethanol in a volumetric ratio 95:5 improved further spinnability obtaining similar nanofiber diameters (218.0 nm ± 96.0). The rheological analysis has allowed to highlight the role of the alkyl portion (C8 and C12) on the spinnability of the blended polymers.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3