Synergistic effect of screen-printed Al(OH)3 nanoparticles and phosphorylated cellulose nanofibrils on the thermophysiological comfort and high-intensive heat protection properties of flame-retardant fabric

Author:

Kolar Tjaša1,Geršak Jelka1,Knez Nataša2,Kokol Vanja1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia

2. Fire Laboratory and Fire Engineering, Slovenian National Building and Civil Engineering Institute, Ljubljana, Slovenia

Abstract

Al(OH)3 nanoparticles (ATH NPs) and phosphorylated cellulose nanofibrils (PCNFs) were used as user-friendly and comfortable coating components on flame-retardant fabric to improve its thermophysiological comfort and high-intensive heat protection properties. The effect of the PCNF imprinting and its attachment after the post-printing of a hydrophobic polyacrylate (AP) on the same (back side) or the other (front) side of the fabric, with and without the addition of ATH NPs, was considered, to maintain the front side (facing the wearer) as hydrophilic while keeping the back side (facing the outside) hydrophobic. The amount of coatings applied and their patterning were studied, varied with the ATH NPs’ concentration (1.7, 3.3 and 6.7 wt%) and screen mesh size used (60 and 135), based on the coating’ mass, fabric’s air permeability, thickness and microstructure. The reduced moisture build-up (55%), increased the water vapour (13%) and heat (12%) transfer from the skin, were assessed by applying PCNF under the AP, being more pronounced in the case of using a 135 mesh-sized screen, given the smaller, more densely distributed, thinner and imprinted pattern coatings. These effects were further improved by the addition of nanoporous ATH NPs, which allowed more homogeneous spreading of the moisture and its faster transport. Such a treatment also shifted the fabric’s degradation temperature towards higher values (up to 15°C), retained up to 30% of high-heat flux (21 kW/m2), prolonged the time to ignition by 11 s and reduced the total heat released by up to 60%, thereby providing better protection when exposed to the heat, due to the presence of the phosphorous (PCNF) promoted generation of an Al2O3 char acting as a barrier layer, while also reducing the production of heat and generation of smoke by 75%.

Funder

Slovenian Research Agency

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3