Effect of fibrillation degree of empty fruit bunch fiber on sandwich composite incorporate with spent mushroom substrate

Author:

Shakir Mohammad A1,Ahmad Mardiana I12,Yusup Yusri12,Wabaidur Saikh M3,Siddiqui Masoom R3,Alam Mahboob4,Rafatullah Mohd12ORCID

Affiliation:

1. Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia

2. Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia

3. Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia

4. Division of Chemistry and Biotechnology, Dongguk University, Dongdaero, Gyeongju-si, Republic of Korea

Abstract

Sandwich composite panel for heat insulation application were fabricated from two types of agricultural biomass waste, the oil palm empty fruit bunch and spent mushroom substrate. These agricultural biomasses are abundant, renewable, and without proper disposal management, might cause massive environmental pollution. This study investigated the effect of fibrillation degree on EFB fiber through the morphology modification to enhance the properties and thermal characteristic of the sandwich composite panel. Fibrillation is a physical changes that occurred on the surface and internal structure of fiber after undergo excessive physical modification by using refiner machine. Higher fibrillation degree could be achieve by narrowing the space area between two disks of refiner which also known as refining gap. In this research, a composite panel was developed from (SMS) and (EFB) fiber via sandwich hot pressing method. One composite sample using raw EFB fiber and three composite sample at fibrillation degree 191.40%, 211.70% and 271.68% were made at density 0.8 g/cm3. Based on result, the morphological structure of EFB fiber improved in term of formation of small fibril formation, larger surface area, optimum fiber length, optimum fiber diameter and better fiber distribution in composite panel. The mechanical properties of composite was obtained at range 2.77–7.21 MPa for tensile strength, 16.61–18.59 MPa for flexural strength, 2.06–3.18 MPa for internal bond and 4.35–15.79 kJ/m2 for impact strength. For physical properties, value of water absorption and thickness swelling were obtained at range 90.34–142.61% and 18.01–44.80%, respectively. Last but not least, the thermal conductivity value of sandwich composite was obtained at range 0.234–0.282 W/m.K. Overall result found that increasing fibrillation degree on EFB fiber at 211.70% able to contribute in improving the mechanical properties, physical properties and thermal characteristic of sandwich composite panel. This research finding suggested that enhancement of fiber morphology using fibrillation degree approach is considered as an alternative eco-friendly method that could be implemented to improve the properties and thermal characteristic of sandwich composite panel.

Funder

Universiti Sains Malaysia

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3