Affiliation:
1. Department of Textile Engineering, National Center for Composite Materials, School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
Abstract
Generally, carbon and glass fibers based composites are used in high-tech end products, but these are not preferred in indoor, outdoor and hygienic furniture applications due to microorganisms attack and prone to fire. In the first section of the research, different percentages (5%, 10%, and 15%) of zirconium phosphate (ZrP) particles were added in epoxy resin and corresponding glass/epoxy composites were fabricated to enhance their flame retardancy (FR) and mechanical properties (tensile, flexural, Charpy impact, and short beam shear). In the second section, different percentages (0.5%, 1%, and 1.5%) of zinc oxide (ZnO) particles were mixed in the epoxy resin and corresponding glass/epoxy composites were fabricated to optimize their antibacterial activity and mechanical performance. 15% concentration of ZrP particles exhibited the maximum flame retardancy and mechanical performance in composites, and 1.5% concentration of ZnO particles exhibited the highest antibacterial activity along with improved mechanical performance. In the third section, two (02) pure glass and carbon, and two (02) glass-carbon/carbon-glass hybrid composites were made with optimized concentrations of both ZrP and ZnO particles. Carbon/epoxy (H2) composite showed the highest mechanical properties in comparison with glass and hybrid composites due to the presence of four layers of carbon reinforcement. These functional hybrid composite-based furniture products can be used in indoor, hygienic (hospitals, schools, and offices), and outdoor furniture applications.
Funder
Higher Education Commission, Pakistan
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献