Preparation and characterization of thermal-responsive non-woven poly (propylene) materials grafted with N-isopropylacrylamide/ β-cyclodextrin

Author:

Amiri Setareh12,Zadhoush Ali1,Mallakpour Shadpour3,Larsen Kim Lambertsen2,Duroux Laurent2

Affiliation:

1. Department of Textile Engineering, University of Technology, Isfahan, Iran

2. Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark

3. Department of Chemistry, Isfahan University of Technology, Isfahan, Iran

Abstract

A temperature-sensitive hydrogel was successfully grafted on the surface of non-woven poly(propylene) materials. This was carried out by the application of unmodified β-cyclodextrin and N-isopropylacrylamide monomer in order to develop new functional hydrogels for textile science and technology. Graft polymerization technique was used to graft this temperature-sensitive hydrogel on the surface of plasma-treated non-woven poly(propylene) materials. Fourier transform infrared attenuated total reflection, scanning electron microscopy and elemental analyses confirmed the presence of poly( N-isopropylacrylamide) and β-cyclodextrin components on the surface of the textile. Unmodified β-cyclodextrin content was estimated by the use of elemental analysis to be 97 µg/cm2. The water uptake measurements and differential scanning calorimetry analyses showed that the hydrogel maintained its temperature-sensitive property with a lower critical solution temperature (33.23℃) compared to a non-grafted hydrogel. The wicking time and contact angle measurements showed an improvement of the wicking ability and hydrophilicity of modified non-woven poly(propylene) materials. This investigation facilitates the preparation of smart textiles which possess the temperature-sensitive property of poly( N-isopropylacrylamide) and the ability of inclusion complex formation with guest molecules due to the presence of unmodified β-cyclodextrin in the hydrogel network.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3