Affiliation:
1. Department of Mechanical Engineering, National Institute of Technology, Rourkela 769008, India
Abstract
The need of eco-friendly, sustainable, and biodegradable material for structural and non-structural application increases day by day. Jute fiber is one of the largely produced natural fibers and has properties comparable to synthetic fibers. Currently, abrasive wear of the agricultural and engineering machine components is one of the major industrial problems. An attempt has been made in this paper to study the abrasive wear behavior of bidirectional jute fiber–epoxy composites. Composites of five different compositions with fiber loading ranging from 0 to 48 wt.% were prepared using hand lay-up technique. Observations has been made under steady state condition to understand the effect of sliding velocity and normal load on the specific wear rate and coefficient of friction of the composites. It further outlines a methodology based on Taguchi's experimental design approach to make a parametric analysis of wear behavior. It has been found that the composites with 36 wt.% fiber loading exhibits minimum specific wear rate at different sliding velocity and normal load. The parametric combination of factors, such as sliding velocity of 144 cm/s, fiber loading of 48 wt.%, normal load of 40 N, sliding distance of 70 m, and abrasive size of 200 µm shows an optimum condition for minimum specific wear rate, whereas sliding velocity of 144 cm/s, fiber loading of 12 wt.%, normal load of 10 N, sliding distance of 80 m, and abrasive size of 300 µm show an optimum condition for minimum coefficient of friction. Finally, the worn surfaces were examined using a scanning electron microscope.
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献