The electromagnetic interference shielding performance of continuous carbon fiber composites with different arrangements

Author:

Zhao Xiaoman1,Fu Jiajia12,Wang Hongbo1

Affiliation:

1. Key Laboratory of Eco-textiles Ministry of Education, Jiangnan University, Wuxi, P.R. China

2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, P.R. China

Abstract

Composites with different arrangements of continuous carbon fibers, with the poly(ethylene terephthalate)-spunbond nonwoven fabrics as substrates, were fabricated for optimization of electromagnetic interference shielding performance. Effects of these structural parameters, including array spacing, the number of layers, and overlap angle, were investigated within the frequency band of 30 MHz–1.5 GHz, which includes the major electromagnetic wave frequency from daily electronic device or apparatus. Within 30 MHz–750 MHz, shielding effectiveness was fortified with the decrease of array spacing and the increase of the number of layers owning to the increase of the continuous carbon fiber content. Whereas, within the frequency band of 750 MHz–1.5 GHz, the number of layers presented little effect on the shielding performance reasoning that the impact of continuous carbon fiber orientation was more significant than that of continuous carbon fiber content. While the array spacing was 8 mm and the maximum value of shielding effectiveness for the two-layer composites was 46.8 decibel at frequency of 1000 MHz. For multilayer composites, shielding performance was improved by synergistic effects of overlap angle and array spacing. Hence, composite with three layers, array spacing of 12 mm and overlap angle of 0°–0°–45° achieved the highest electromagnetic interference shielding properties of 60.49 decibel, corresponding frequency of 1.0 GHz. The results of this work demonstrated a potentially efficient and economical way to fabricate the electromagnetic interference shielding composites with less content of continuous carbon fiber and to simultaneously achieve superb shielding performance. This work will be significant for further study in the electromagnetic interference shielding composite industry in the near future.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3