Cellulosic tent fabric coated with boron nitride nanosheets

Author:

Yaras Ali1,Er Engin2,Çelikkan Hüseyin3,Disli Ali3,Alicilar Ahmet4

Affiliation:

1. Department of Metallurgy and Materials, Faculty of Engineering, Bartin University, Bartin, Turkey

2. Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey

3. Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey

4. Department of Chemical Engineering, Faculty of Engineering, Gazi University, Ankara, Turkey

Abstract

This study concerns with the preparation of flame retardant and hydrophobic cellulosic fabric by using hexagonal boron nitride nanosheets (h-BNNs). h-BNNs were prepared from hexagonal boron nitride (h-BN) using two different exfoliation methods. These methods include direct sonication (aq-BNNs) and sonication after pretreatment with Hummers method (Hum-BNNs) in aqueous medium. The characterization of h-BNNs was carried out by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), limited oxygen index (LOI), and water contact angle (WCA) analysis. The surface morphologies of h-BNNs were investigated via atomic force microscope (AFM). The coating with the h-BNNs was proved by scanning electron microscopy (SEM). Hummers method is considered to be more effective reaction by gained functionality to h-BN structure. In this way, it will easily provide physical or chemical interaction between the functionalized h-BN and cellulosic structure. A nanometric-sized large layers and slightly functionalized h-BNNs were obtained using Hummers method. Hum-BNNs dispersions were sprayed onto the surface of cellulosic tent fabric to show flame retardance properties. However, it was observed that the flame retardant effect of nanolayered h-BNNs prepared by both methods were insufficient. In addition, ultrahydrophobic surfaces were almost obtained using aq-BNNs and Hum-BNNs. It was conclusively proposed that a few amounts of Hum-BNNs can be used as hydrophobic coating for cellulosic fabric surface with this way.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3