Influence of honeycomb structures on fluids transmission and heat retention properties; An initiative towards stretchable weaves

Author:

Habib Ahmed1,Draz Umar1,Abbas Adeel2ORCID,Shaker Khubab3ORCID,Nawab Yasir14ORCID,Seyam Abdel-Fattah M5,Umair Muhammad1ORCID

Affiliation:

1. Department of Textile Engineering, School of Engineering and Technology, National Textile University, Sheikhupura, Pakistan

2. Center for Material Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Melbourne, VIC, Australia

3. Department of Material, School of Engineering and Technology, National Textile University, Sheikhupura, Pakistan

4. North Carolina State University, Raleigh, NC, USA

5. Department of Textile and Apparel, Technology and Management, Wilson College of Textiles, NC State University, Raleigh, NC, USA

Abstract

The aesthetics and functionality of honeycomb woven assemblies qualifies them for a range of applications expanding across home textiles, fashion, functional apparels, and technical products. Researchers have explored honeycomb assemblies with the focus on shrinkage, sound absorption, thermal conductivity, and heat protection properties analysis via variation in their cell sizes. However, very minimal research is found on analysis of honeycomb woven fabric assemblies’ thermal comfort characteristics by employing different weft insertion sequence and materials (cotton and stretchable yarns). This study reflects the thermal conductivity, dry fluid transmission (air permeability), wet fluid transmission (moisture management), and stiffness attributes of twelve stretchable honeycomb woven assemblies consisting of single ridge, double ridge, and brighton honeycomb weave structures along with different weft sequences of cotton and Type 400 (T-400) stretch yarns. Characterization data showed that single ridge honeycomb structure supports the highest dry fluid transmission property; however, brighton honeycomb offers the highest heat retention property. Double ridge honeycomb highlights the capability of the highest wet fluid transmission property, and brighton honeycomb has immense stiffness. Statistical analysis (ANOVA) also showed that honeycomb structures, weft yarn sequence and material have a statistically significant impact on thermal conductivity and fluid transmission behaviors with p-values less than 0.05.

Funder

Higher Education Commission, Pakistan

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3