Bio-leather: Sustainable clothing fabrics made from simple media ingredients and slime mold Physarum polycephalum

Author:

Bi Zhuoran1,Crnković Tea2ORCID

Affiliation:

1. School of Design, Royal College of Art, London, UK

2. Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

The textile industry contributes significantly to global warming and pollution, especially the leather industry, which uses livestock and toxic tanning processes that have a great environmental impact. Currently, efforts are being made to mitigate the negative impacts of the textile industry by using alternative non-toxic chemicals or by recycling fabric. More recent efforts explore utilization of non-conventional biomaterials and organisms, such as mushroom mycelia, algae or genetically-engineered microorganisms. In this study, we implemented slime mold Physarum polycephalum perfused through leather-like fabrics made from air-dried simple nutritious media in order to develop environmentally friendly, easy-to-manufacture and sustainable fabrics. Plasmodium was validated for its viability and propagation under non-sterile conditions and in contaminated environments on different media compositions made from agar, peach gum, gelatin, carrageenan or glycerol. We determined optimal media components to be agar, gelatin and glycerol which supported plasmodium growth and yielded sturdy and flexible fabric sheets after air-drying. Ultimately, plasmodium-perfused fabric sheets were sewed into apparel and footwear. This study demonstrates the use of simple media as a clothing fabric perfused with plasmodium, which produces intricate colors and patterns on the fabric. Plasmodium has the ability to enhance fabric properties due to its natural problem-solving abilities, such as biosensing, fabric self-repair, and distant fabric communication.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3