Mechanical Performance of glass/epoxy composites enhanced by micro- and nanosized aluminum particles

Author:

Megahed M1ORCID,Fathy A1,Morsy D1,Shehata F1

Affiliation:

1. Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, Egypt

Abstract

In this article, the effects of using nanometer and micrometer-sized aluminum particles in glass fiber reinforcement epoxy composites have been studied. The study evaluates the mechanical properties improvement with the addition of nanometer and micrometer-sized aluminum particles to glass fiber reinforcement epoxy composites. The combination of aluminum and woven glass fibers provide high potential for the modification of the epoxy matrix. The composites were produced by hand lay-up technique. The glass fiber volume fraction was kept constant at 35%, while the contents of aluminum particles were increased from 0.2 to 4 wt%. The developed composites showed enhanced tensile, flexural, hardness, wear, and impact behavior as compared to glass fiber reinforcement epoxy. An enhancement of 27% was attained in tensile strength with glass fiber reinforcement epoxy filled with 2 wt% aluminum nanoparticles; however, adding 4 wt% nanometer-sized aluminum particles showed an improvement of 114%, 116%, 21%, 52.2%, 21.4%, 76.6% in tensile elongation, toughness, tensile modulus, flexural strength, flexural strain, flexural modulus, respectively as compared to neat glass fiber reinforcement epoxy. Increasing the nanometer-sized aluminum particles in glass fiber reinforcement epoxy composites to 4 wt% reversed the improvement trend in tensile strengths, wear, and hardness. However, increasing the micrometer-sized aluminum particles to 4 wt% has shown fair improvement in all used aluminum loadings. Microscopy results showed that the aluminum particles were well dispersed in the epoxy matrix. However, a higher weight fraction of nano-aluminum in the epoxy had promoted little agglomerations.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3