Optimization of 3D woven preform for improved mechanical performance

Author:

Kashif Muhammad1ORCID,Hamdani Syed Talha Ali2ORCID,Nawab Yasir2,Asghar Muhammad Ayub2,Umair Muhammad2,Shaker Khubab2

Affiliation:

1. Department of Textile Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Balochistan, Pakistan

2. Weaving Department, National Textile University, Faisalabad, Pakistan

Abstract

For structural design applications, through-thickness characteristics of reinforcement played a vital role, which is why 3D woven preforms are recommended for such applications. These characteristics are mainly dependent on the fiber and yarn positioning in reinforcement. Although research has been conducted for characterizing woven composites, special attention has not been made on weave pattern parameter which directly affects the mechanical performance of composites. In this research work, 3D orthogonal layer to layer and through thickness woven structures with different interlocking patterns have been thoroughly studied for their mechanical properties, thickness, air permeability and areal density. Natural fibers when used with biodegradable matrix find use in structural, as well as low to medium impact applications for automobiles. Jute yarn was used to produce four-layered 3D woven structures, as synthetic fibers will not give a biodegradable composite part. The focus of this study is to optimize weave pattern, which is robust in design, degradable preforms and easy to reproduce. The main objective of this research focused on the effectiveness of weaving patterns on physical and mechanical properties as well as to optimize the weave pattern for optimum performance. Grey relational analysis was used for the optimization of the robust weave pattern. The results showed that hybrid structures can be useful for improving the properties of the orthogonal layer to layer and through thickness woven structures. It was also noted that weft-way 3D woven structures can provide comparable mechanical properties with warp-way 3D woven structures.

Funder

Higher Education Commission, Pakistan

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3