Water vapor transmission and electromagnetic shielding characteristics of stainless steel/viscose blended yarn woven fabrics

Author:

Rathour Rochak1ORCID,Krishnasamy Jagatheesan2ORCID,Das Apurba1,Alagirusamy R1

Affiliation:

1. Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi, India

2. Department of Textile Technology, PSG College of Technology, Coimbatore, India

Abstract

In this study, stainless steel/viscose blended yarn was prepared and different structured woven fabrics were prepared for studying the moisture transmission and electromagnetic shielding behaviour. By doubling viscose spun yarn with SS filament yarn, the SS/viscose blended yarn was prepared. The woven fabrics were made in a sample loom using viscose yarn and SS/viscose blended yarn. By changing the metal content, thread density and conductive fibre proportions at different levels, the developed fabrics were analyzed for maximum shielding effectiveness in the frequency of 300 kHz to 1.5 GHz. The fabric having conductive threads in warp and weft directions showed larger shielding effectiveness (SE) compared to fabric having conductive threads in one direction. The increase in weft density, proportions of conductive threads (in weft direction) and metal content increases the shielding level of fabric. The highest SE of 56 dB was observed for plain woven fabric compared to 3/1 twill, 2/2 twill and 2/2 basket fabrics in the frequency of 700 MHz. The influence of environmental factors such as relative humidity and pH on shielding behaviour of fabrics were also studied. As the relative humidity was increased, the SE was also increased. The fabric treated with acidic (or) basic condition exhibited better SE than the fabric in neutral condition. Similarly, air permeability and water vapour transmission characteristics of the developed conductive fabrics were also analyzed. The air permeability of the fabric was higher when the metal content in the fabric was low. The fabric having more floats showed higher air permeability compared to fabrics with less floats. Similarly, the water vapour transmission rate was also high for long float fabrics. The developed conductive fabrics could be used as wall covering and personal protective clothing in defense industry.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3