Effect of the cover factor on the tensile properties of multi-core flax/polypropylene micro-braided hybrid yarns for thermoplastic biocomposites

Author:

Zhai Wenqian1,Wang Peng23ORCID,Soulat Damien1ORCID,Legrand Xavier1ORCID

Affiliation:

1. Gemtex, Ecole Centrale de Lille, Ensait, Roubaix, France

2. Lpmt, University of Haute-Alsace, Ensisa, Mulhouse, France

3. University of Strasbourg, Strasbourg, France

Abstract

With the growing popularity of hybrid yarn techniques, the micro-braided yarn is becoming a good choice as one kind of intermediate materials for thermoplastic biocomposites, by presenting favorable morphology during the preform process and lowering the resin flow distance during the thermo-compression process. In this article, different flax/polypropylene (PP) based multi-core micro-braided hybrid yarns with the similar total number of flax core fibers were manufactured, by varying the parameters: multi-core configuration and braiding angle; both dry-and thermo- states tensile tests on yarns were carried out, since it is necessary to simulate the deforming behavior of a single hybrid yarn during the thermoforming process. The objective is to determine the cover factor especially for multi-core micro-braided yarn as a comprehensive textile indicator; and to study the influence of the cover factor parameters on mechanical tensile properties at the yarn scale. It has been observed that the cover factor parameters contributed the braider effect (friction and compression) on flax cores in the dry-state and lubricant effect (distribution and viscosity) in the thermo-state; further influenced the characterizations. Increasing multi-core configuration and braiding angle can both increase the tensile strength; larger cover factor results in greater tensile stiffness both in dry-and thermo-states.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three-dimensional (3D) braided natural fiber preforms;Multiscale Textile Preforms and Structures for Natural Fiber Composites;2023

2. Towards high-performance textile-structure composite: Unidirectional hemp fiber tape and their composite;Industrial Crops and Products;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3