Optimization and experimental validation of reinforcing fibers winding pattern for carbon/carbon composite crucible preform

Author:

Dong Jiuzhi12,Zhao Jiafei12ORCID,Li Rui12,Jiang Xiuming12

Affiliation:

1. School of Mechanical Engineering, Tiangong University, Tianjin, China

2. Advanced Mechatronics Equipment Technology Tianjin Area Major Laboratory, Tiangong University, Tianjin, China

Abstract

In order to address the problem of transition slip between the cylindrical segment and the ellipsoidal head segment of the carbon/carbon composite crucible preform with asymmetrical structure during the winding process, a winding pattern combining geodesic and non-geodesic is presented innovatively. Firstly, the formulae for the winding angle and the winding central rotation angle of the crucible cylindrical segment and the ellipsoidal head segment are established, and the fourth-order Runge-Kutta numerical method is employed for parametrical design. The two-tangent point winding path is determined by analyzing the effect of the cylindrical segment’s winding pitch, different ellipsoidal head segment heights, and slip coefficient on the winding angle. Secondly, the needle disk winding method is proposed to address the slight winding angle at the open end of the cylinder, making it easier to hang the yarn. Finally, the experiment on dry yarn winding of 3k carbon fiber (linear density: 198 g/km) is carried out. The results indicate that the relative error rate between the actual winding angle and the theoretical design angle differs by no more than 1.66%, demonstrating that carbon fibers can be stably and uniformly wound onto the surface of the carbon/carbon composite crucible preform. Compared to the traditional manual winding method, the winding pattern enhances winding efficiency, ensures carbon fibers’ uniformity and structural stability, and provides a new technological approach to producing high-performance composite materials.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3