Biodegradation properties and thermogravimetric analysis of 3D braided flax PLA textile composites

Author:

Kanakannavar Sateeshkumar1,Pitchaimani Jeyaraj1ORCID,Thalla Arunkumar2,Rajesh M3

Affiliation:

1. Department of Mechanical Engineering, NITK Surathkal, India

2. Department of Civil Engineering, NITK Surathkal, India

3. School of Mechanical Engineering, VIT University, India

Abstract

Recent advances in the development and application of bio-based (natural fiber and biopolymer) composites are gaining broad attention because the resulting polymer completely degrades and does not release harmful substances. In this study, natural fiber 3 D braided yarn textile PLA (Polylactic acid) bio-composites are developed by film sequencing followed by hot-press compression molding. Bio-deterioration and thermal stability of the composites are analysed for storage, machining, transportation, and in-service uses in different environmental conditions (compost and thermal). Composite samples with different fiber wt.% (0, 22, 44) are exposed to compost soil. Tensile testing is performed under different configurations to characterise the tensile properties. Prepared bio-composite specimens are evaluated for weight loss and reduction in tensile properties over soil burial time, to observe the rate of biodegradation of braided yarn textile bio-composites. Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) is employed to analyse the biodegradability of the composites. To study the thermal stability of the prepared bio-composites thermogravimetric (TG) analysis is carried out. Results showed that biodegradability, tensile properties and thermal stability of the composites are enhanced significantly with the reinforcement of 3 D braided yarn fabric.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3