Affiliation:
1. College of Fashion, Shanghai University of Engineering Science, Songjiang District, PR China
Abstract
In this study, a novel approach and the related equipment of coaxial electrospinning have been developed to fabricate a new ultrafine polysulfone amide/polyurethane coaxial fibers at nanoscale, with the polysulfone amide as the core and the polyurethane as the shell of the blended fibers. As the co-spinneret has effects on the structure and properties of the spun fiber, three types of co-spinnerets with different diameters were designed to investigate its effects on the fabricated fibers in this research. Three series of polysulfone amide/polyurethane coaxial fibers were spun using the self-developed coaxial electrospinning equipment, and these fibers were characterized systematically using scanning electron microscope, transmission electron microscope, X-ray diffraction, differential scanning calorimeter and thermogravimetric. High-speed photography was used to digitalize the image of the tailor cone and jet motion of polymer fluid during the spinning process, which provides a detailed description of the electrospinning for the further theoretical analysis. The three-dimensional electric field simulation was also carried out to model the differences of electric field. Our experimental results show that the mechanical and thermal properties of the core–shell fibers fabricated in this research have been improved in the comparison with the fibers spun using the conventional single-needle electrospinning method. The composite fibers have the core–shell structure, so that it can combine the excellent thermal properties of the polysulfone amide and the excellent mechanical properties of the polyurethane. The newly developed polysulfone amide/polyurethane fiber could be used in the field of industrial textiles; it has the potential applications for the development of high-performance apparels in the future.
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献