Poly(ε-caprolactone) electrospun nanofibers containing cinnamon essential oil nanocapsules: A promising technique for controlled release and high solubility

Author:

Amiri Sahar1,Rahimi Azam2

Affiliation:

1. Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran

2. Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Islamic Republic of Iran

Abstract

Nowadays, cinnamon essential oil is one of the most popular spices for food flavoring and also for medicinal uses such as anti-inflammation agent, but its low solubility, irritations, and allergic reactions limit its applications. To overcome these limitations, cinnamon essential oil-loaded nanocontainers were prepared via inclusion complexation between the cyclodextrins and cinnamon essential oil under two different conditions, i.e., at room temperature or under sonic energy. The resulting supramolecular nanocontainers were characterized by XRD, SEM, DSC, and FTIR. Successful insertion of cinnamon essential oil in the cyclodextrins’ cavity was confirmed by the significant differences between the FTIR, DSC, and XRD spectra of initial mixtures and those of the complexes. XRD results indicated that crystalline complexes adopted a mixture of head to head channel-type and cage conformation for cinnamon essential oil/cyclodextrins at various conditions. Solubility, bioavailability, and in vitro dissolution of obtained cinnamon essential oil nanocapsules were investigated, and results show that by encapsulation of cinnamon essential oil, solubility improved and its release is controllable. The solubility of cinnamon essential oil increased linearly as the concentration of cyclodextrins was increased, confirming the 1:1 stoichiometry of the complex. Electro-spun nanofibers of poly-ɛ-caprolactone containing cinnamon essential oil/cyclodextrins inclusion complex at various conditions indicated that these nanofibers did not show beading defect with controlled release of cinnamon essential oil.

Funder

Iran Polymer and Petrochemical Inistitue

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3