Tensile properties of defect-prefabricated 3D woven composites: Experiments and simulations

Author:

Xu Liming1,Cai Deng’an1,Li Chao2,Jin Xingyu1,Zhou Guangming1ORCID

Affiliation:

1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China

2. Nanjing Fiberglass Research & Design Institute Co., Ltd., Nanjing, P.R. China

Abstract

Three-dimensional (3D) woven composites have been widely used in structural components due to their excellent mechanical and near-net-shape properties. However, for some special applications, it is expected that 3D woven composites can be damaged at designated locations under a specific load. In this research work, a new kind of defect-prefabricated 3D woven composites (DP3DWCs) are designed, where defects are prefabricated by cutting weft or warp yarns in defect-free 3D woven composites (DF3DWCs). The tensile mechanical properties of the DF3DWCs and the DP3DWCs are investigated experimentally and numerically. The mesoscopic geometry models of the DF3DWCs and the DP3DWCs were established by multi-objective searching algorithm. The progressive damage models were established using the 3D Hashin criteria and the von Mises failure criterion. Numerical results agree well with the experimental data. The influence of the number of defect layers on the mechanical properties was also discussed. The obtained results indicate that the defects have little effect on the elastic modulus, while tensile strengths decrease linearly with the increase of the number of defect layers. Failure mechanisms of yarns and matrix in the non-defective and defective materials were studied, and the volume fraction of elements of each failure mode was computed and analysed.

Funder

Shanghai Aerospace Science and Technology Innovation Fund

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Jiangsu Post-doctoral Research Funding Program

Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures

Natural Science Foundation of Jiangsu Province

Nanjing Science and Technology Innovation Project for overseas scholars of 2019

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3