Survival capability of healthcare-associated, multidrug-resistant bacteria on untreated and on antimicrobial textiles

Author:

Hanczvikkel Adrienn1,Víg András2,Tóth Ákos3

Affiliation:

1. Doctoral School on Material Sciences and Technologies, Óbuda University, Hungary

2. Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Hungary

3. Department of Bacteriology, National Public Health Institute, Budapest, Hungary

Abstract

Healthcare-associated infections are of global concern, and textiles can contribute to the transmission of pathogens. In this study, we examined quantitatively the survival capability of 60 multidrug-resistant bacterial strains from four species ( Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus and Enterococcus faecium) on untreated cotton textile in clinically relevant incubation periods. We determined the antibacterial efficiency of textiles treated either with quaternary ammonium compound (QAC)-containing Sanitized T99-19 liquid (50 m/m% Dimethyltetradecyl (3-(trimethoxysilyl)propyl) ammonium-chloride) or with silver salt-containing Sanitized T27-22 Silver liquid (2 m/m% AgCl and 8 m/m% TiO2) as well. Finally, we compared the results of the healthcare-associated, multidrug-resistant strains and antibiotic-sensitive, quality control standard strains (ATCC 25922, ATCC 11105 Escherichia coli, and ATCC 25923, ATCC 6538 Staphylococcus aureus) often used in antimicrobial efficiency tests. The results revealed that all investigated multidrug-resistant bacteria are able to survive on untreated cotton textile and pose health risk in hospitals. During one day the T27-22-Silver-treated textile was able to eliminate most of the Gram-positive pathogens, reducing the risk of cross-contamination, but none of the examined agents destroyed the multidrug-resistant, Gram-negative isolates. The antibiotic-susceptible and the multidrug-resistant Staphylococcus aureus strains had similar survival capability and biocide-tolerance, while the risk of infections caused by multidrug-resistant, Gram-negative pathogens could be extremely underestimated using only ATCC Escherichia coli standard strains. Our results also draw attention to the careful evaluation of antimicrobial efficiency tests and indicate that a significant reduction of bacterial count does not necessarily mean significant antibacterial efficiency that would be suitable to avoid infections.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3