Numerical analysis of crimping behaviour of triaxial braided structures

Author:

Ochola Jerry1ORCID,Malengier Benny2ORCID,Van Langenhove Lieva2

Affiliation:

1. Department of Manufacturing, School of Engineering, Industrial and Textile Engineering, Moi University, Eldoret, Kenya

2. Department of Materials, Faculty of Engineering and Architecture, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium

Abstract

The mechanical properties of tubular braided structures influence their inherent performance during application as biomedical materials. In their use as stents, braided structures are forced to conform to the topology of the host tissues. Triaxial braided structures have had limited use in tissue repair and organ support even though they have the potential of offering equal if not better performance compared to bi-axial braided structures. A study of the mechanical dynamics of tri-axial braids would be crucial in the potential design of customised structures for advanced tissue repair and organ support. This study therefore uses Finite Element Methods (FEM) to design and develop triaxial braided structures and investigate their crimping behaviour using parametric modeling and numerical analysis in their potential application as biomedical materials. The results in this study portrayed that the presence of axial yarns in tubular braided structure offers improved performance in terms of stability of the structure.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3