An experimental study on the interdependence of mercerization, moisture absorption and mechanical properties of sustainable Phoenix sp. fibre-reinforced epoxy composites

Author:

Rajeshkumar G1ORCID

Affiliation:

1. Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Coimbatore, India

Abstract

This paper represents the first effort aimed to study the interdependence of mercerization, moisture absorption and mechanical properties of sustainable Phoenix sp. fibre-reinforced epoxy composites fabricated by compression moulding technique. The investigation was carried out by varying the fibre length (10, 20 and 30 mm), fibre volume fraction (10%, 20%, 30%, 40% and 50%), concentration of sodium hydroxide for fibre treatment (5%, 10% and 15%) and immersion temperature (10℃, 30℃ and 60℃). The fibre–matrix interface and failure mechanism was studied by using scanning electron microscopy. The results revealed that the moisture absorption rate increased with the increase in fibre length, fibre volume fraction and immersion temperature result in loss of tensile and flexural properties. The moisture absorbed samples shows 15% and 7% drop in tensile and flexural strength, respectively. However, this loss was less in mercerized fibre-reinforced composites.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3