Electromagnetic absorbance properties of a textile material coated using filtered arc-physical vapor deposition method

Author:

Esen M1,Ilhan I1,Karaaslan M23,Unal E23,Dincer F34,Sabah C5

Affiliation:

1. Vocational School of Adana, Cukurova University, Turkey

2. Department of Electrical and Electronics Engineering, Mustafa Kemal University, Turkey

3. Metamaterials and Photonics Research Group, Mustafa Kemal University, Turkey

4. Department of Computer Engineering, Mustafa Kemal University, Turkey

5. Department of Electrical and Electronics Engineering, Middle East Technical University—Northern Cyprus Campus, TRNC / Mersin 10, Turkey

Abstract

We explore the structure of a textile absorber in terms of its electromagnetic and absorption properties in the microwave region. Its absorption characteristics are similar to those reported for various metamaterial-based absorbers, exhibiting absorption as high as 98% at resonance. In addition, the angular behavior of the absorption properties of the sample reveal incident angle independency, which is the other added value of the study. Also, the suggested textile absorber has a simple configuration, which introduces flexibility to adjust its material properties and easily tune its structure to suit other frequencies. The proposed textile absorber and its variations have myriad potential applications in radar technology, long distance radio telecommunication, and so on. Although in its current state the proposed structure provides almost perfect absorption covering a wide range of microwave C-Band, the developing technology will soon allow manufacturing textiles that can manipulate lights, leading to the design of invisibility cloak and other science fiction devices besides finding important application areas in medical science.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3