Investigation flexural behavior of hybrid-reinforced layered filament wound pipes using experimental tests and numerical model

Author:

Masoumi Mehrdad1,Abdellahi Sayyed Behzad1ORCID,Hejazi Sayyed Mahdi1

Affiliation:

1. Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

In the present study, filament wound pipes were fabricated by glass and polypropylene (PP) yarns with the three different filament winding angles 55°, 70°, and 82°. Glass and PP yarns were wound around the pipe with two methods; layered and hybrid. Epoxy resin was applied as a matrix to manufacture composite samples. It should be mentioned that composite samples were made in different layers. The three-point bending test was carried out on all samples to investigate the bending behavior of the composites. The experimental results showed that the winding angle 55° is better than other angles in terms of improving the flexural strength of the composite. Moreover, using hybrid yarn to fabricate the composite sample increases the flexural strength and energy absorption of the composite. In the next step, a multi-scale finite element model was applied to predict the flexural behavior of the composites. In this model, a unit-cell of each composite structure was modeled at the meso scale and elastic constants of the composites were extracted by a Python code. In addition, failure parameters for the composites were determined according to micromechanical equations. All elastic and failure parameters were utilized for the macro model and simulation three-point bending test. The numerical results were compared with the experimental and a good agreement could be observed between numerical and experimental results. So, the proposed model is proper to predict the mechanical behavior of the filament wound composite with high accuracy.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3