Barium sulfate/regenerated cellulose composite fiber with X-ray radiation resistance

Author:

Qu Lijun123,Tian Mingwei123,Zhang Xiansheng12,Guo Xiaoqing123,Zhu Shifeng123,Han Guangting23,Li Changlei4

Affiliation:

1. College of Textiles, Qingdao University, Qingdao, Shandong, PR China

2. Laboratory of New Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong, PR China

3. Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong, PR China

4. CHTC HELON CO., LTD, Weifang, Shandong, PR China

Abstract

In this article, submicron barium sulfate particles, as the radiation-resistant component, were incorporated into regenerated cellulose spinning solution. Then a series of X-ray radiation-resistant fibers were fabricated via a primarily industrialized wet-spinning trail, and the resultant fibers were knitted into fabrics by knitting loom. The morphology and structure of the fibers were studied with the aid of scanning electron micrography, Fourier-transform infrared spectroscopy, and X-ray diffraction. The composite fibers exhibited reasonably good properties, which met the criteria of mechanical requirements of commercial textiles—dry breaking strength and elongation (>1.5 cN/dtex and 26%) and wet breaking strength and elongation (>1.4 cN/dtex and 22%) and permanent laundry-resistant abilities even after being washed 20 times. An effective and feasible X-ray radiation-resistant method, the medical digital X-ray photography system, was proposed to evaluate the radiation resistance of the composite fiber and its fabric. The X-ray attenuation ratio of the sample tended to increase with increasing barium sulfate content and finally reached a dose of a 0.1 mmPb lead equivalent. Therefore, these fibers and fabrics can be utilized as the base materials for X-ray radiation-resistant lightweight apparel and detective surgical yarn.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3