Mechanical properties of flexible composites reinforced with high-performance glass fiber multi-axial warp-knitted fabrics

Author:

Li Bing1,Zhao Ziyu1,Ma Pibo1ORCID

Affiliation:

1. Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, China

Abstract

This paper investigates the quasi-static mechanical properties and damage behavior of flexible composites prepared from high-performance glass fiber-based multi-axial warp knitted fabrics as reinforcement and high tenacity environmentally friendly thermoplastic polyurethane as a matrix. The composites were produced by attaching thermoplastic polyurethane (TPU) to the top and bottom of the fabric using a vulcanization machine, followed by hot-pressing for different temperatures and time settings. Moreover, the effects of different preparation processes on the tensile strength, static puncture resistance, and tear strength of flexible composites were investigated in this paper. The results indicated that both hot-pressing temperature and vulcanization time had a significant impact on the mechanical properties of the composites. With an optimum vulcanization temperature of 185°C and a vulcanization time of 10 min, the composite provides optimum tensile strength and puncture resistance. Tear strength is the worst and is related to the reinforcement’s organisational structure and the interfacial bond’s strength. The results of this study are of theoretical and practical significance for applying high-performance multi-axial warp-knitted flexible composites as raw materials in the construction field.

Funder

National Science Funds of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3