Design of Polycaprolactone Vascular Grafts

Author:

Yalcin I1,Horakova J2,Mikes P2,Sadikoglu T Gok1,Domin R3,Lukas D2

Affiliation:

1. Istanbul Technical University, Faculty of Textile Technologies and Design, Department of Textile Engineering, Istanbul, Turkey

2. Technical University of Liberec, Faculty of Textile Engineering, Department of Nonwovens and Nanofibrous materials, Liberec, Czech Republic

3. Liberec Regional Hospital, Pathology Department, Liberec, Czech Republic

Abstract

A large number of patients suffer from vascular diseases, resulting in the need for bypass surgery. Since there are still limitations in the replacement of small diameter vascular grafts, the need and demand for developing more desirable grafts is increasing day by day. In this study, polycaprolactone small-diameter (6 mm) vascular grafts were produced successfully using custom-designed electrospinning apparatus. Radial fiber orientation was achieved by increasing the rotational speed of the collector. The morphological, structural, mechanical, and biological properties were examined. The results show that oriented scaffolds with 2 µm average fiber diameter provide 1 MPa ultimate tensile strength in the radial direction. The pore size area was found to be adequate in the oriented samples required for cell proliferation and diffusion through the tunica media. In vitro biocompatibility of the grafts was proven with 3T3 mouse fibroblasts. After cell seeding, the oriented fibers serve as a cue for radial cell alignment. An understanding of electrospun material parameters together with knowledge of native blood vessel structures and properties is a considerable part in designing small-diameter vascular grafts.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3