Microstructure and performance characteristics of acoustic insulation materials from post-consumer recycled denim fabrics

Author:

Islam Shafiqul1,El Messiry Magdy2ORCID,Sikdar Partha Pratim1,Seylar Joshua3,Bhat Gajanan1ORCID

Affiliation:

1. Department of Textiles, Merchandising and Interiors, University of Georgia, Athens, GA, USA

2. Textile Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt

3. Department of Polymer Engineering, The University of Akron, Akron, OH, USA

Abstract

One of the key issues of the 21st century is to reduce the rate of continuously increasing environmental pollution from waste generated by human beings. Use of recycled materials and environmentally friendly approaches to manufacturing can be a good way to deal with these challenges. Similarly, sound pollution has been increasing at an alarming rate due to industrialization and modernization. Use of acoustic insulation materials produced from recycled textile waste can play a vital role in reduction of sound pollution while simultaneously helping reduce municipal solid waste. The goal of this study was to evaluate the recycling of used apparels to produce commercially feasible sustainable products using nonwoven fabrication techniques with a biodegradable thermoplastic binder fiber for possible use as acoustic insulation panels. Recycled denim fibers were used with Sorona® or a PLA binder fiber to successfully produce sound insulation with good performance properties. Maximum transmission loss of about 24 dB and transmission coefficient close to zero at around 1000 Hz were observed. The data indicated that there is a direct correlation between loss of sound transmission with increase in thickness, areal density and decrease in air permeability. When compared with commercially available acoustic insulation material (gypsum board), these products had better insulation properties, indicating that recycled textile products can be used to produce such value-added materials, giving them another useful life before safely disposing in composting environments.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3