Characterisation and photo-fatigue behaviour of UV-sensitive photochromic systems produced using electrospinning

Author:

Solanki Utkarshsinh B1ORCID,Viková Martina1ORCID,Holec Pavel2ORCID,Erben Jakub2,Vik Michal1ORCID

Affiliation:

1. Department of Material Engineering (KMI), Technical University of Liberec, Liberec, Czech Republic

2. Department of Nonwovens and Nanofibrous Materials (KNT), Technical University of Liberec, Liberec, Czech Republic

Abstract

This research aimed to create a UV sensor using photochromic pigment in nonwoven form and analyse its fatigue resistance under continuous ultraviolet (UV) light. The photochromic polymeric matrices consist of a photochromic pigment, a polymer, and a photo stabilizer, which enhance the stability of the photochromic systems under light exposure. As a base matrix, we used polyvinyl butyral. Then, we added different amounts of the photochromic pigment 5-chloro-1,3,3-trimethylspiro [indoline-2,3′-(3H) naphtho (2,1-b) (1,4)-oxazine]. We produce photochromic nonwovens by electrospinning a polymeric matrix solution with varying pigment concentrations. The study aimed to create a UV sensor with photochromic nanofibers that are very sensitive to light. It also tested how well it can degrade under continuous UV radiation by looking at its photo fatigue resistance under constant UV irradiation for its final use as a UV sensor material. Using FTIR, CRM, SEM, and XRD techniques, this study investigates the physiochemical properties and photodegradation behaviour of photochromic nonwovens and writes a report on it. The photo-light stability of photochromic materials is a major problem concerning its external stimuli in different substrate forms. It also looks at how well they resist photo-chemically towards the UV light. The fatigue resistance measurements were carried out using a FOTOCHROM3 spectrophotometer under continuous UV irradiance using two different modes. This study evaluated and reported their photodegradation behaviour in cyclic and continuous UV irradiance modes. The tests showed that the prepared photochromic system works well with photostability and can go through more than 20 exposure cycles, each with 100 min of UV light and intensity equal to 1/3 of the sun’s rays on a clear day. Given the PVB applications in our daily lives, it can serve as a UV sensor in numerous industrial applications. Photochromic nanofibers possessing excellent photosensitivity hold immense promise as optical rewritable devices and colourimetric-based UV sensors.

Funder

Technická Univerzita v Liberci

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3