Effect of joint stiffness on torsional stiffness of open lattice composite structures

Author:

Shen Yang1,Branscomb David1,Adanur Sabit2ORCID

Affiliation:

1. Highland Industries, Kernersville, NC, USA

2. Mechanical Engineering, Auburn University, Auburn, AL, USA

Abstract

In open lattice composite structures, the lattice components are chemically bonded, which affects the overall properties of the structure. This study examines the effects of chemically bonded joints on the torsional stiffness of tubular lattice composite structures. Tubular open lattice structures, known as the open-architecture composite structures, are manufactured by braiding the impregnated carbon fiber tows. Samples were prepared with no chemically bonded and with epoxy joints using braid angles of 35°, 45°, and 67.5°. A finite element model of the open-architecture composite structures is developed to examine the mechanical behavior under torsion. It is shown that there is a significant difference between the samples with no-bonding joints and samples with epoxy joints in terms of torsional stiffness. Torsional stiffness of the structure is retained at 97%, 96%, and 93% of the theoretical limit for 35°, 45°, and 67.5° braid angles, respectively, when joint stiffness is ten times the component stiffness. Torsional stiffness is only 32%, 22%, and 13% of the theoretical limit for 35°, 45°, and 67.5° braid angles, respectively, when joint stiffness is one-10th of the component stiffness. The epoxy bonding at the intersection achieves 72% of the theoretical torsional stiffness of the “perfect joint” for 45° braid angle when joint stiffness is equal to the component stiffness. The finite element model is validated by experimental results. It can be concluded from the finite element analysis and experimental testing that the stiffness of the bonding joints has significant impact on the overall torsional stiffness of the biaxial composite lattice.

Funder

Marshall Space Flight Center

Highland Industries

Samuel Ginn College of Engineering

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3